首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   132353篇
  免费   16624篇
  国内免费   6534篇
电工技术   6692篇
综合类   8256篇
化学工业   36742篇
金属工艺   11694篇
机械仪表   5295篇
建筑科学   10658篇
矿业工程   3132篇
能源动力   5473篇
轻工业   14275篇
水利工程   1858篇
石油天然气   6035篇
武器工业   1493篇
无线电   9683篇
一般工业技术   18221篇
冶金工业   6991篇
原子能技术   1450篇
自动化技术   7563篇
  2024年   310篇
  2023年   2317篇
  2022年   4275篇
  2021年   6386篇
  2020年   4734篇
  2019年   4501篇
  2018年   4506篇
  2017年   5688篇
  2016年   6974篇
  2015年   7641篇
  2014年   8885篇
  2013年   9317篇
  2012年   8755篇
  2011年   8522篇
  2010年   6582篇
  2009年   6827篇
  2008年   5779篇
  2007年   8391篇
  2006年   8259篇
  2005年   6912篇
  2004年   5273篇
  2003年   4645篇
  2002年   3852篇
  2001年   2803篇
  2000年   2194篇
  1999年   1875篇
  1998年   1481篇
  1997年   1222篇
  1996年   1169篇
  1995年   922篇
  1994年   817篇
  1993年   577篇
  1992年   562篇
  1991年   440篇
  1990年   359篇
  1989年   290篇
  1988年   203篇
  1987年   146篇
  1986年   128篇
  1985年   138篇
  1984年   133篇
  1983年   95篇
  1982年   92篇
  1981年   69篇
  1980年   74篇
  1966年   25篇
  1964年   34篇
  1962年   65篇
  1959年   32篇
  1955年   23篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
梯度分层铝合金蜂窝板是一种有效的吸能结构,本工作在梯度铝蜂窝结构的基础上根据梯度率的概念,通过改变蜂窝芯层的胞壁长度,设计了4种质量相同、梯度率不同的铝蜂窝夹芯结构。通过准静态压缩实验,并结合非线性有限元模拟准静态及冲击态下梯度铝蜂窝夹芯结构的变形情况及其力学性能,分析对比了相同质量下梯度铝蜂窝夹芯结构在准静态下的变形模式以及冲击载荷下分层均质蜂窝结构和不同梯度率的分层梯度蜂窝结构的动态响应和能量吸收特性。结果表明:在准静态压缩过程中,铝蜂窝梯度夹芯板的变形具有明显的局部化特征,蜂窝芯的变形为低密度优先变形直至密实,层级之间的密实化应变差随芯层密度的增大而逐渐减小;在高速冲击下,梯度蜂窝板并非严格按照准静态过程中逐级变形直至密实,而是在锤头冲击惯性及芯层密度的相互作用下整体发生的线弹性变形、弹性屈曲、塑性坍塌及密实化;另外,在本工作所设计的梯度率中,当梯度率为γ1=0.0276时,梯度蜂窝夹芯板的吸能性达到最好,相较于同等质量下的均质蜂窝夹芯板,能量吸收提高了10.63%。  相似文献   
32.
Cell surface and secreted proteins provide essential functions for multicellular life. They enter the endoplasmic reticulum (ER) lumen co-translationally, where they mature and fold into their complex three-dimensional structures. The ER is populated with a host of molecular chaperones, associated co-factors, and enzymes that assist and stabilize folded states. Together, they ensure that nascent proteins mature properly or, if this process fails, target them for degradation. BiP, the ER HSP70 chaperone, interacts with unfolded client proteins in a nucleotide-dependent manner, which is tightly regulated by eight DnaJ-type proteins and two nucleotide exchange factors (NEFs), SIL1 and GRP170. Loss of SIL1′s function is the leading cause of Marinesco-Sjögren syndrome (MSS), an autosomal recessive, multisystem disorder. The development of animal models has provided insights into SIL1′s functions and MSS-associated pathologies. This review provides an in-depth update on the current understanding of the molecular mechanisms underlying SIL1′s NEF activity and its role in maintaining ER homeostasis and normal physiology. A precise understanding of the underlying molecular mechanisms associated with the loss of SIL1 may allow for the development of new pharmacological approaches to treat MSS.  相似文献   
33.
The convenience of injectable hydrogels that can provide high loading of diverse phototherapy agents and further long-time retention at the tumor site has attracted tremendous interest in simultaneous photothermal and photodynamic cancer therapies. However, to incorporate the phototherapy agents into hydrogels, complex modifications are generally unavoidable. Moreover, these phototherapy agents usually suffer from low efficiency and work at different irradiation wavelengths outside the near infrared windows. Hence, a method for the fabrication of an injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy, through the Schiff-base reaction between amido modified carbon dots (NCDs) and aldehyde modified cellulose nanocrystals is proposed. The NCDs act as both phototherapy agents and crosslinkers to form hydrogels. Significantly, the NCDs demonstrate an extremely high photothermal conversion efficiency of 77.6% which is among the highest levels for photothermal agents and a high singlet quantum yield of 0.37 under a single 660 nm light-emitting diode irradiation. The hydrogels are examined through in vitro and in vivo animal experiments which show nontoxic and effectively tumor inhibition. Thus, the strategy of direct reaction of phototherapy agents and the matrix not only provides new strategies for injectable hydrogel fabrication but paves a new road for advanced tumor treatment.  相似文献   
34.
Amyloid precursor protein (APP) is a type 1 transmembrane glycoprotein, and its homologs amyloid precursor-like protein 1 (APLP1) and amyloid precursor-like protein 2 (APLP2) are highly conserved in mammals. APP and APLP are known to be intimately involved in the pathogenesis and progression of Alzheimer’s disease and to play important roles in neuronal homeostasis and development and neural transmission. APP and APLP are also expressed in non-neuronal tissues and are overexpressed in cancer cells. Furthermore, research indicates they are involved in several cancers. In this review, we examine the biological characteristics of APP-related family members and their roles in cancer.  相似文献   
35.
36.
Thermal energy storage (TES) materials constituted by a microencapsulated paraffin having a melting temperature of 6°C and a thermoplastic polyurethane (TPU) matrix were prepared through fused deposition modeling. Scanning electron microscope (SEM) micrographs demonstrated that the microcapsules were homogeneously distributed within the matrix, with a rather good adhesion within the layers of 3D printed specimens, even at elevated concentrations of microcapsules. The presence of paraffin capsules having a rigid polymer shell lead to a stiffness increase, associated to a decrease in the stress and in the strain at break. Tensile and compressive low-cycles fatigue tests showed that the presence of microcapsules negatively affected the fatigue resistance of the samples, and that the main part of the damage occurred in the first fatigue cycles. After the first 10 loading cycles at 50% of the stress at break, a decrease in the elastic modulus ranging from 60% for neat TPU to 80% for composite materials was detected. This decrease reached 40% of the original value at 90% of the stress at break after 10 cycles. Differential scanning calorimetry tests on specimens after fatigue loading highlighted a substantial retention of the original TES capability, in the range of 80%–90% of the pristine value, even after 1000 cycles, indicating that the integrity of the capsules was maintained and that the propagation of damage during fatigue tests took probably place within the surrounding polymer matrix. It could be therefore concluded that it is possible to apply the developed blends in applications where the materials are subjected to cyclic stresses, both in tensile and compressive mode.  相似文献   
37.
β-Glucan is widely distributed in various plants and microorganisms and is composed of β-1,3-linked d-glucose units. It may have a branched short or long side chain of glucose units with β-1,6- or β-1,4-linkage. Numerous studies have investigated different β-glucans and revealed their bioactivities. To understand the structure-function relationship of β-glucan, we constructed a split-luciferase complementation assay for the structural analysis of long-chain β-1,6-branched β-1,3-glucan. The N- and C-terminal fragments of luciferase from deep-sea shrimp were fused to insect-derived β-1,3-glucan recognition protein and fungal endo-β-1,6-glucanase (Neg1)-derived β-1,6-glucan recognition protein, respectively. In this approach, two β-glucan recognition proteins bound to β-glucan molecules come into close proximity, resulting in the assembly of the full-length reporter enzyme and induction of transient luciferase activity, indicative of the structure of β-glucan. To test the applicability of this assay, β-glucan and two β-glucan recognition proteins were mixed, resulting in an increase in the luminescence intensity in a β-1,3-glucan with a long polymer of β-1,6-glucan in a dose-dependent manner. This simple test also allows the monitoring of real-time changes in the side chain structure and serves as a convenient method to distinguish between β-1,3-glucan and long-chain β-1,6-branched β-1,3-glucan in various soluble and insoluble β-glucans.  相似文献   
38.
CrAlYN coatings with different Y contents (0, 5 and 12 at.%) were deposited by cathodic arc evaporation to investigate the influence of Y-addition on the structure, mechanical and thermal properties of CrAlN coatings by using X-ray diffraction, scanning electron microscopy, differential scanning calorimetry, thermal gravimetric analysis and nanoindentation. The structural transformation of single phase cubic Cr0.42Al0.58N and Cr0.39Al0.56Y0.05N coatings to cubic–wurtzite mixed Cr0.32Al0.56Y0.12N coating leads to a drop in hardness from (30.2±0.7) GPa of Cr0.42Al0.58N and (32.0±1.0) GPa of Cr0.39Al0.56Y0.05N to (25.2±0.7) GPa of Cr0.32Al0.56Y0.12N. The incorporation of 5 at.% Y retards the thermal decomposition of CrAlN, verified by the postponed precipitation of w-AlN and N-loss upon annealing. Correspondingly, Cr0.39Al0.56Y0.05N coating consistently exhibits the highest hardness value during thermal annealing. Nevertheless, alloying with Y exerts an adverse effect on the oxidation resistance of CrAlN.  相似文献   
39.
To quantitatively investigate the initial crystallization of zeolite beta synthesized by direct heating, the extent of the reaction was precisely evaluated by X-ray diffraction measurements and Rietveld structural refinement, and a kinetic analysis of crystallization was performed using the Avrami-Erofe'ev equation. The activation energy for crystallization was lower than that for hydrothermal synthesis. Reaction and synthesis time curves revealed that the initial zeolite beta crystallization consisted of three stages. The first was an induction period with nucleation by the generation of building units and the formation of an initial coordinated structure. The second stage was crystal growth by a diffusion-controlled reaction, and the third stage involved slowing down of crystallization by the limitation of dehydrocondensation. These stages could be analyzed by calculation of the rate constant and Avrami exponent for each stage.  相似文献   
40.
Polymeric elastomers play an increasingly important role in the development of stretchable electronics. A highly demanded elastic matrix is preferred to own not only excellent mechanical properties, but also additional features like high toughness and fast self-healing. Here, a polyurethane (DA-PU) is synthesized with donor and acceptor groups alternately distributed along the main chain to achieve both intra-chain and inter-chain donor-acceptor self-assembly, which endow the polyurethane with toughness, self-healing, and, more interestingly, thermal repair, like human muscle. In detail, DA-PU exhibits an amazing mechanical performance with elongation at break of 1900% and toughness of 175.9 MJ m−3. Moreover, it shows remarkable anti-fatigue and anti-stress relaxation properties as manifested by cyclic tensile and stress relaxation tests, respectively. Even in case of large strain deformation or long-time stretch, it can almost completely restore to original length by thermal repair at 60 °C in 60 s. The self-healing speed of DA-PU is gradually enhanced with the increasing temperature, and can be 1.0–6.15 µm min−1 from 60 to 80 °C. At last, a stretchable and self-healable capacitive sensor is constructed and evaluated to prove that DA-PU matrix can ensure the stability of electronics even after critical deformation and cut off.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号